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If a gravity field model represented by spherical harmonics up to the maximum
degree n = N4, is analysed by not using all coefficients C),,,, and Sy, but
cutting the model at n = N < Npq, (or setting to zero all coefficients for
n > N), then this corresponds to a low pass filtering in the frequency domain.
Unfortunately, this ‘rigorous’ cutting leads to the well-known side lobes in the
spatial structures of the truncated fields. The mathematical explanation for
this is the following: The low pass filtering by ‘rigorous’ cutting of the short
wavelengths corresponds to a multiplication of the model with a boxcar function
in the frequency domain. However the Fourier transform of the boxcar function
is the slit function (and vice versa). Both functions form a Fourier transform
pair (see Fig. 1).
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Figure 1: The Fourier transform pair:
boxcar function in the frequency domain (left) and

slit function in the time domain (right)

Thus the Fourier (back)transform of the function H(f) in the frequency domain

H(f) = A for |fl<
H(f) = A for [fl=fo (1)
H(f) = 0 for 7] > fo



is the function h(t) in the spatial or time domain
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As an example for these side lobe effects, figure 2 shows the gravity anomalies
of the model ‘EIGEN_GRACEO01S’ truncated at N = 90. One can see clearly
the ‘ring waves’ around the biggest amplitudes of the gravity anomalies (Andes,
Hawaii, deep-sea trenches).
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Figure 2: Gravity anomalies of the model EIGEN_GRACEQ01S
truncated at N=90

A ‘gentle’ truncation in the frequency domain can minimize this effect. To
accomplish this, a function f(z) has to be looked for, which decreases monoton-
icallyly from 1 to 0 in the interval z, to z; and has horizontal first derivatives
at the points x, and x;:
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Using the simple ansatz
f(.T) = 04])4 + 02.132 + Ciz + Cy (4)
fl(x) = 4C4$3 + 202 + C;

it follows:
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can be found. Figure 3 shows the function from x, = 60 to x; = 120.
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Figure 3: Gently cut function for z, = 60 and z; = 120

Figure 4 shows the result after replacing the ‘rigorous’ truncation of the
gravity field model ‘EIGEN_GRACEOQLS’ at N = 90 by ‘gently’ cutting the
spherical harmonic series from N, = 60 to N, = 120 (see Fig. 3), i.e. the
coefficients C,,, and Sy, for 60 < n < 120 have been multiplied by the function
f(n) (eq. 6). The unfiltered model ‘EIGEN_GRACEOQ1S’ (N4, = 140) is shown
in figure 5.
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Figure 4: Gravity anomalies of the model EIGEN_GRACEQ01S
gently cut from N = 60 to N = 120
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Figure 5: Gravity anomalies of the model EIGEN_GRACEQ01S
up to the full degree N = 140



