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If a gravity field model represented by spherical harmonics up to the maximum
degree n = Nmax is analysed by not using all coefficients Cnm and Snm but
cutting the model at n = N < Nmax (or setting to zero all coefficients for
n > N), then this corresponds to a low pass filtering in the frequency domain.
Unfortunately, this ‘rigorous’ cutting leads to the well-known side lobes in the
spatial structures of the truncated fields. The mathematical explanation for
this is the following: The low pass filtering by ‘rigorous’ cutting of the short
wavelengths corresponds to a multiplication of the model with a boxcar function
in the frequency domain. However the Fourier transform of the boxcar function
is the slit function (and vice versa). Both functions form a Fourier transform
pair (see Fig. 1).
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Figure 1: The Fourier transform pair:
boxcar function in the frequency domain (left) and

slit function in the time domain (right)

Thus the Fourier (back)transform of the function H(f) in the frequency domain

H(f) = A for |f | < f0

H(f) =
1
2

A for |f | = f0 (1)

H(f) = 0 for |f | > f0
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is the function h(t) in the spatial or time domain

h(t) = 2Af0
sin(2πf0t)

2πf0t
(2)

As an example for these side lobe effects, figure 2 shows the gravity anomalies
of the model ‘EIGEN GRACE01S’ truncated at N = 90. One can see clearly
the ‘ring waves’ around the biggest amplitudes of the gravity anomalies (Andes,
Hawaii, deep-sea trenches).
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Figure 2: Gravity anomalies of the model EIGEN GRACE01S
truncated at N=90

A ‘gentle’ truncation in the frequency domain can minimize this effect. To
accomplish this, a function f(x) has to be looked for, which decreases monoton-
icallyly from 1 to 0 in the interval xa to xb and has horizontal first derivatives
at the points xa and xb:

f(xa) = 1 ; f(xb) = 0 ; f ′(xa) = f ′(xb) = 0 (3)

Using the simple ansatz

f(x) = C4x
4 + C2x

2 + C1x + C0 (4)
f ′(x) = 4C4x

3 + 2C2x + C1

it follows:

C4x
4
a + C2x

2
a + C1xa + C0 = 1

C4x
4
b + C2x

2
b + C1xb + C0 = 0 (5)

4C4x
3
a + 2C2xa + C1 = 0

4C4x
3
b + 2C2xb + C1 = 0
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and:

f(x) =
(

x− xa

xb − xa

)4

− 2
(

x− xa

xb − xa

)2

+ 1 (6)

can be found. Figure 3 shows the function from xa = 60 to xb = 120.
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Figure 3: Gently cut function for xa = 60 and xb = 120

Figure 4 shows the result after replacing the ‘rigorous’ truncation of the
gravity field model ‘EIGEN GRACE01S’ at N = 90 by ‘gently’ cutting the
spherical harmonic series from Na = 60 to Nb = 120 (see Fig. 3), i.e. the
coefficients Cnm and Snm for 60 < n < 120 have been multiplied by the function
f(n) (eq. 6). The unfiltered model ‘EIGEN GRACE01S’ (Nmax = 140) is shown
in figure 5.
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Figure 4: Gravity anomalies of the model EIGEN GRACE01S
gently cut from N = 60 to N = 120
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Figure 5: Gravity anomalies of the model EIGEN GRACE01S
up to the full degree N = 140
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